Search results for "adjoint group"
showing 3 items of 3 documents
Associative rings with metabelian adjoint group
2004
Abstract The set of all elements of an associative ring R, not necessarily with a unit element, forms a monoid under the circle operation r∘s=r+s+rs on R whose group of all invertible elements is called the adjoint group of R and denoted by R°. The ring R is radical if R=R°. It is proved that a radical ring R is Lie metabelian if and only if its adjoint group R° is metabelian. This yields a positive answer to a question raised by S. Jennings and repeated later by A. Krasil'nikov. Furthermore, for a ring R with unity whose multiplicative group R ∗ is metabelian, it is shown that R is Lie metabelian, provided that R is generated by R ∗ and R modulo its Jacobson radical is commutative and arti…
Radical Rings with Engel Conditions
2000
Abstract An associative ring R without unity is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R ∘ under the circle operation r ∘ s = r + s + rs on R . It is proved that, for a radical ring R , the group R ∘ satisfies an n -Engel condition for some positive integer n if and only if R is m -Engel as a Lie ring for some positive integer m depending only on n .
Radical Rings with Soluble Adjoint Groups
2002
Abstract An associative ring R , not necessarily with an identity, is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R ∘ under the circle operation r ∘ s = r + s + rs on R . It is proved that every radical ring R whose adjoint group R ∘ is soluble must be Lie-soluble. Moreover, if the commutator factor group of R ∘ has finite torsion-free rank, then R is locally nilpotent.