Search results for "adjoint group"

showing 3 items of 3 documents

Associative rings with metabelian adjoint group

2004

Abstract The set of all elements of an associative ring R, not necessarily with a unit element, forms a monoid under the circle operation r∘s=r+s+rs on R whose group of all invertible elements is called the adjoint group of R and denoted by R°. The ring R is radical if R=R°. It is proved that a radical ring R is Lie metabelian if and only if its adjoint group R° is metabelian. This yields a positive answer to a question raised by S. Jennings and repeated later by A. Krasil'nikov. Furthermore, for a ring R with unity whose multiplicative group R ∗ is metabelian, it is shown that R is Lie metabelian, provided that R is generated by R ∗ and R modulo its Jacobson radical is commutative and arti…

Discrete mathematicsPure mathematicsRing (mathematics)Algebra and Number TheoryGroup (mathematics)Metabelian groupMultiplicative groupLocal ringRadical ringJacobson radicalMetabelian groupAssociative ringLie metabelian ringAdjoint grouplaw.inventionInvertible matrixlawUnit (ring theory)MathematicsJournal of Algebra
researchProduct

Radical Rings with Engel Conditions

2000

Abstract An associative ring R without unity is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R ∘  under the circle operation r  ∘  s  =  r  +  s  +  rs on R . It is proved that, for a radical ring R , the group R ∘  satisfies an n -Engel condition for some positive integer n if and only if R is m -Engel as a Lie ring for some positive integer m depending only on n .

Discrete mathematicsReduced ringPrincipal ideal ringRing (mathematics)Algebra and Number TheoryGroup (mathematics)adjoint groupJacobson radicalRadical of a ringradical ringIntegerEngel conditionGroup ringMathematicsJournal of Algebra
researchProduct

Radical Rings with Soluble Adjoint Groups

2002

Abstract An associative ring R , not necessarily with an identity, is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R ∘ under the circle operation r  ∘  s  =  r  +  s  +  rs on R . It is proved that every radical ring R whose adjoint group R ∘ is soluble must be Lie-soluble. Moreover, if the commutator factor group of R ∘ has finite torsion-free rank, then R is locally nilpotent.

Reduced ringDiscrete mathematicsRing (mathematics)Lie-soluble ringAlgebra and Number TheoryGroup (mathematics)Locally nilpotentadjoint groupJacobson radicalCombinatoricsIdentity (mathematics)radical ringsoluble groupUnit (ring theory)Group ringMathematicsJournal of Algebra
researchProduct